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1 Introduction

First-hand information on the nature of the dark matter (DM) in our universe may be
revealed by one or more of the current generation of direct detection experiments. The
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DAMA collaboration have measured an annual modulation in their scintillation event rate,
initially with the DAMA/NaI set-up [1], and more recently with the DAMA/LIBRA con-
figuration [2], which they interpret as being due to the modulation in the DM-nuclear
scattering event rate following from the annual variation of the Earth’s velocity through
the DM in our galaxy. At face value, this measurement appears to be in disagreement with
other direct detection experiments if we make the usual assumptions about the nature
of the DM; namely that the DM is a weakly interacting massive particle (WIMP) that
elastically scatters off the target material with a spin independent interaction.

Inelastic dark matter (iDM) [3] was proposed as a way to reconcile the positive re-
sult from DAMA/NaI with the null result from germanium based detectors. In the iDM
scenario, WIMP-nucleon elastic scattering is suppressed, while inelastic scattering from a
ground-state WIMP to a slightly higher mass excited WIMP is allowed and dominates the
recoil event rate. As we summarize in section 2, the kinematics of the recoil scattering
are changed by the inelastic nature of the collision, and this can bring the DAMA results
closer to agreement with the other experiments for three principal reasons:

• Heavier nuclei are favoured.

• The recoil spectrum is changed at low energies.

• The ratio of modulated to unmodulated signal is higher.

Nevertheless the other direct detection experiments still strongly constrain the DM inter-
pretation of DAMA/LIBRA, with, apparently, only a relatively small region of parameter
space being allowed [4].

One unchecked assumption that goes into the analysis is that the velocity distribution
of the DM in the galactic rest frame is well described by so-called Standard Halo Model
(SHM). The SHM assumes that in the galactic frame the WIMP distribution is an isotropic
isothermal sphere, which leads to an essentially structureless isotropic Maxwell-Boltzmann
velocity distribution with dispersion set by the local circular velocity. This is a questionable
assumption: Little is known about the phase-space distribution of DM on the scales relevant
for direct detection experiments, and as we outline in section 3 numerical simulations of
DM distributions for Milky-Way-like galaxies lead to results differing from the SHM in
potentially significant ways, especially for iDM which is more sensitive to the DM velocity
distribution.

In this paper, we compare the results obtained using the SHM to those obtained using
two recent computer simulations of the DM distribution in a Milky-Way-like galaxy:

• Via Lactea [5] - a Milky Way size DM halo distribution containing 234 million par-
ticles.

• Dark Disc [6] - a simulation which contains in addition to the SHM, a slowly rotating
disc of DM

With these less idealised halo models, we find that the iDM scenario allows the DAMA
region to be consistent with all other experiments, and that in the Via Lactea distribution,
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more parameter space can be opened up at high WIMP masses, compared to the SHM.
After reviewing the details of each experiment and describing how we calculate the allowed
DAMA region and exclusion curves for the null experiments in section 4, we present our
results together with their physical interpretation in section 5.

2 Inelastic dark matter

2.1 Review of inelastic dark matter

If the dark matter particle can only scatter off nuclei by making a transition to a heav-
ier state then the altered kinematics of the interaction can lead to significant changes in
detection rates for different detectors [3, 4, 7]. If we call the two dark matter states χ−
and χ+, with mass splitting δ ≡ Mχ+ −Mχ− ∼ O(100 keV), then the minimum velocity
to scatter off a nucleus and impart an energy ER is given by;

vmin = c

√
1

2MNER

(
MNER
µ

+ δ

)
, (2.1)

where µ is the reduced mass of the WIMP-nucleus system, and MN is the nucleus mass.
There are a variety of particle physics models that lead to such phenomenology [3, 8, 9]. The
models will not be our concern in this paper, rather our focus will be upon the consequences
of iDM for direct detection experiments.

The differential event rate for WIMP nucleus scattering on a given element, as a
function of recoil energy ER, is given by, [10]:

dR

dER
= NTMN

ρχσn
2mχµ2

ne

(fpZ + fn(A− Z))2

fn
2 F 2[ER]

∫ ∞
vmin[ER]

f(v)
v

dv, (2.2)

where, as in [4], NT is the number of target nuclei, ρχ is the local dark matter density,
taken as 0.3 GeV/cm3, µne the reduced mass of the WIMP and nucleon, and σn is the
WIMP-neutron cross section. The factors fn and fp parameterize the relative scattering
strength off neutrons and protons. For simplicity and to maintain model-independence we
assume that scattering off neutrons and protons is the same and take fn = fp = 1. (This
assumption is not always correct for candidate dark matter particles from specific models.)
F [ER] is the nuclear form factor, which can be modeled analytically with the Helm form
factor [11] or calculated numerically using the Fermi Two-Parameter form factor [12]. In
accordance with [4] we will use the Helm form factor for CDMS II, KIMS, XENON10,
ZEPLIN-II, and ZEPLIN-III, and the Fermi Two-Parameter form factor for CRESST-II
and DAMA/LIBRA. In the first panel of figure 1 we show for tungsten the difference that
results between the form factors.

Finally, f(v), is the local velocity distribution of the WIMPs in the Earth rest frame.
The default assumption for the dark matter phase space density is the so-called “Standard
Halo Model” (SHM) which assumes a local isothermal and isotropic distribution of dark
matter leading to a Maxwell-Boltzmann velocity distribution. Changes in this velocity
distribution make major differences to the final differential event rate as calculated from
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Figure 1. Recoil energy spectrum for scattering off of tungsten. On the left the inelastic scattering
rates are shown for the two choices of form factor: the Fermi Two-Parameter (dashed) and Helm
(solid) form factor. Both choices show that iDM leads to a suppression of low-energy events. The
right panel shows the recoil energy spectrum for elastic scattering; in this case the difference between
the two form factors is negligible. For elastic scattering the recoil spectrum peaks at low ER. All
calculations assume Mχ = 200 GeV, σn = 10−40 cm2 and the SHM velocity distribution truncated
at vesc = 500 km/s.

eq. (2.2), especially for iDM. We emphasize that f(v) is poorly constrained by data and not
well understood. The primary subject of this paper is to investigate the allowed parameter
space for iDM taking account of reasonable variations in f(v) motivated by numerical
simulations of the DM distribution in our galaxy.

The most important difference between inelastic and standard elastic dark matter is
the δ-dependent increase in the minimum relative velocity for scattering with recoil energy
ER, see eq. (2.1). The important consequences for direct detection experiments are:

• As only higher velocity portions of the dark matter distribution lead to recoils the
overall event rate for a given cross section is lower.

• The spectrum of events is changed, with the greatest qualitative departure from
elastic scattering occurring at low energies. As one can see from the first panel of
figure 1 there is a low energy cut off in the recoil spectrum. This is not present for
elastic scattering as shown in the second panel of figure 1.

• Due to the higher minimum velocity the annual modulation as a fraction of the
total signal can be much greater. It is possible that detection of WIMPs occurs
solely during the summer months, when the Earth’s velocity into the WIMP wind is
greatest, leading to a modulation fraction of 100%. This has important consequences
both for DAMA/LIBRA and XENON10.

• As the minimum velocity cut-off, eq. (2.1), is lower for heavier target nuclei, inelas-
tic scattering leads to higher expected detection rates for heavier elements. This
has important consequences for the sensitivity of the CDMS II (AGe = 72.64) and
CRESST-II (AW = 183.84) experiments.
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2.2 Overview of consequences of iDM for the various experiments

The minimum velocity for scattering will be much greater for the CDMS II detector com-
pared to DAMA/LIBRA, where the dominant signal is from scattering off of germanium
and iodine respectively, because germanium is much lighter than iodine. This leads to a
weakening of the constraints from CDMS II on the region of parameter space preferred by
the DAMA/LIBRA annual modulation signal. In fact for high enough δ the expected rate
for CDMS II can be consistent with zero, while still allowing signal at DAMA/LIBRA.
The converse effect applies to the CRESST-II experiment, where scattering occurs off of
tungsten. Here we would expect a higher rate for scattering, which leads to CRESST-II
setting the most stringent constraints on the DAMA/LIBRA results.

The three xenon based experiments, XENON10, ZEPLIN-II, and its successor ZEPLIN-
III, provide an excellent model-independent test of the DAMA/LIBRA results due to the
similarity of xenon and iodine masses (AXe = 131.293, AI = 126.904). However the events
observed at these detectors lead to consistency with the DAMA/LIBRA preferred region.
Also, due to the enhancement of the modulation effect, detectors which took results over
the winter period, when signals would be lowest, inevitably set lower constraints than pos-
sible if running during the summer months. This applies in particular to the XENON10
experiment. Moreover, the low upper-energy limit (30.2 keV) in the analyzed recoil energy
spectrum of ZEPLIN-III reduces the sensitivity of this experiment to the iDM scenario, as
for a typical δ of 100 keV the xenon recoil spectrum peaks at ∼40 keV.

We return to the details of the experiments in section 4.

3 Dark matter halos

Due to the long range of the gravitational force, and the distribution of matter in our galaxy,
one would expect the correct velocity distribution of dark matter particles to deviate from
exact Maxwellian and to show some anisotropy. N-body simulations of large numbers of
dark matter particles have shown that the SHM may well be incorrect [5, 6].

Here we will consider three models for the local velocity distribution of particles in
the dark matter halo. We will always take the Earth velocity with respect to the galactic
rest frame to be given by vEarth = v� + v⊕, where v� is the Sun’s velocity relative to the
galactic rest frame and v⊕ is the Earth’s velocity relative to the Sun. v� is the sum of the
Sun’s peculiar [13] and circular [14] velocities:

v� =

 10.00
5.23
7.17

 km/s +

 0
220
0

 km/s (3.1)

v⊕ is given by [10];

v⊕ = 〈uE〉(1− e sin(λ(n)− λ0))

 cos(βx) sin(λ(n)− λx)
cos(βy) sin(λ(n)− λy)
cos(βz) sin(λ(n)− λz)

 km/s (3.2)
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where the Earth’s orbit has a mean velocity 〈uE〉 = 29.79 km/s and ellipticity e = 0.016722.
The quantities βi, λi, define the orientation of the Earth’s orbit in galactic coordinates,
and λ(n) gives the angular position of the Earth’s orbit for a given day number n, with
n = 1 corresponding to 1st January 2000. These quantities are given in [10].

The WIMP velocity distribution in the Earth’s rest frame is found by performing a
Galilean boost from the galactic rest frame distribution:

f⊕(v, t) = fgal(v + vEarth(t)) (3.3)

One feature common to all of the velocity distributions considered here is that they are
truncated at the local escape velocity, fgal(|v| > vesc) = 0. There is relatively large error
in the known value of the local escape velocity, 498 < vesc < 608 km/s (90%), with a
median of 544 km/s [15]. We have taken vesc = 550 km/s in the analysis presented here. In
section 5.7 we check that varying vesc between the 90% confidence limits does not change
the qualitative features of our results, and therefore the conclusions.

3.1 The Standard Halo Model

In the Standard Halo Model (SHM) one assumes a Maxwellian velocity distribution for

the dark matter particles, with a local velocity dispersion σ = v/
√

2, where v =
√
−r dU(r)

dr

is the local circular velocity, and U(r) is the gravitational potential. This distribution is
truncated at the escape velocity according to:

f(v) =

{
1
N [exp(−v2/v2)− exp(−v2

esc/v
2)] v < vesc

0 v > vesc
(3.4)

3.2 Via Lactea

Here we use results for the phase space distribution of dark matter in a Milky-Way-like
galaxy derived from a simulation containing 234 million particles of dark matter and no
baryons; Via Lactea [5] published in 2006.

In [16] the velocity distribution of dark matter particles was fitted to the distribution of
individual particles from the Via Lactea simulation [5]. The radial and tangential velocity
distributions were fitted according to;

f(vR) =
1
NR

exp
[
−
(
v2
R

v2
R

)αR
]

(3.5)

f(vT ) =
2πvT
NT

exp
[
−
(
v2
T

v2
T

)αT
]

(3.6)

and the distribution was truncated in the same way as for the SHM. From figure 3 in [16]
we extracted the values αR ≈ 1.09, and vR/(

√
−U(r0)) ≈ 0.72 and αT ≈ 0.73, and

vT /(
√
−U(r0)) ≈ 0.47 at our radius from the centre of the galaxy, r0 ≈ 8.5 kpc. (Although

there is uncertainty in our radius from the galactic centre, r0 = 8.0 ± 0.5 kpc [14], from
figure 3 in [16] one can see that the values of αT and vT do not change significantly over the
range 7.5 < r0 < 8.5 kpc, and the tangential velocity distribution is the main determinant
of the event rate).
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For completeness we will present results using two values for
√
−U(r0). In the Via

Lactea halo the average value of
√
−U(r) between 7 and 9 kpc is 270km/s [17]; we

will refer to results using this value as VL270. Following [16], and in order to allow
direct comparison between inelastic and elastic scenarios, we also present results using√
−U(r0) = 220km/s [18], and refer to these as VL220.

We believe both values for
√
−U(r0) are worth studying, given that the Milky Way is

baryon dominated at the solar radius, so uncertainties will arise from the lack of baryons in
any simulation which contains only dark matter particles. It is also important to remember
that the velocity distribution extracted from any DM simulation is for a Milky-Way-like
galaxy, and not the Milky-Way itself. Therefore it is important to study the effects of
reasonable deviations from results predicted by a simulation.

The deviation from the Gaussian distribution and difference in radial and tangential
velocity dispersions have been shown in [16] to affect the expected DAMA/LIBRA mod-
ulation signal for elastic dark matter, although not by enough to allow an elastic DM
interpretation of the DAMA results.

Due to the smaller tangential velocity dispersion in this model, compared to the SHM,
one would expect the results for inelastic scattering to be changed for light nuclei. This
is because the high minimum velocity for scattering on light nuclei leaves only the high
velocity part of the distribution detectable. This smaller velocity dispersion reduces the
population of this high velocity region further, leading to a reduced event rate. This effect
is particularly interesting as it arises through the combination of iDM and the Via Lactea
halo. We further discuss this in section 5.1.

3.3 Dark disc

Previous simulations of the DM phase space density distribution have modelled the dark
matter alone, while at the solar neighbourhood we expect the effects of the baryons, the gas
and stars that make up the Milky Way, to be important. Read et al. [6] have performed a
series of simulations including the baryons, and have shown that massive satellites, dragged
into the disc plane by dynamical friction, are torn apart by tidal forces depositing their
stars and dark matter into a thick disc, lying in the same plane as the visible galaxy. Later
the influence of this dark disc on direct detection of elastic dark matter was examined [19].
Here we investigate the influence of the dark disc on iDM detection.

Following [19], we assume the dark disc kinematics match the Milky Way’s stellar thick
disc, whose properties are listed in table 1 of [6]. This will be a good approximation if the
Milky Way’s stellar thick disc is mostly composed of accreted, rather than heated stars.
We model the dark disc as a component of DM additional to the SHM, lagging the rotation
of the Sun by 40 km/s in the tangential direction, compared to the SHM which lags by
220 km/s. It is also assumed to have a Maxwellian velocity distribution, with a dispersion
of σ = (63, 39, 39) km/s, and a density in the range 0.5 < ρDisc

ρSHM
< 2. We employ these

parameter ranges in our study of iDM signals from the dark disc.
Due to the smaller relative velocity of the dark disc with the Earth, when compared

with the SHM, one would expect dark disc event rates to be low for high δ as the dark disc
particles may not have high enough velocity to cross the minimum velocity threshold.

– 7 –
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4 Experimental information

We now turn to a detailed discussion of the individual direct detection experiments.

4.1 DAMA/LIBRA

As the Earth revolves around the Sun, there should be a larger flux of WIMPs incident on
the detector around the 2nd June, when the relative velocity of the Earth is at a maximum
with respect to the galaxy. Conversely, the flux incident on the detector should be smallest
around the 2nd December when the relative velocity of the Earth is at a minimum with
respect to the galaxy. It is the annual modulation in the recoil event rate caused by this
velocity modulation that the DAMA collaboration claim to have measured.

The first results from the DAMA/LIBRA set-up, with an exposure of 0.53 ton-yr,
have recently been published [2]. These have been combined with the data collected by the
DAMA/NaI set-up to give an impressive 0.82 ton-yr total exposure, yielding a modulation
signal at 8.2 σ C.L.

For a WIMP mass Mχ > 10 GeV, this signal appears to be in conflict with other
experiments under the assumptions of spin independent, elastic WIMP-nucleon scattering,
with the WIMP phase space distribution described by the SHM. This has prompted a
number of alternative explanations: light WIMPs [20–27], spin dependent interactions [28],
mirror dark matter [29, 30] and iDM [3].

4.1.1 Quenching and channeling

DAMA use highly radiopure NaI(Tl) scintillators as their target material. The light yield
of scintillators depends on whether the recoiling nucleus interacts electromagnetically or
via the strong nuclear interaction, since only electromagnetic interactions will produce
photons. As a result, the measured energy, EM , is different from the recoiling energy of
the nucleus. This difference is expressed by the quenching factor q defined by EM = qER.
We will follow the convention of measuring ER in keV, and EM in keVee (keV electron
equivalent). The DAMA collaboration have measured the quenching factor for iodine and
sodium for their NaI(Tl) crystals. They obtained the values qNa = 0.3 and qI = 0.09 [31]
with an error of 0.01 on the value of qI [32]. Following the analysis of ref. [4], in our
calculations, we use qNa = 0.3 and qI = 0.085, however in section 5.5 we investigate what
effect varying qI within the experimental limits has on our results.

If the nucleus recoils along certain directions in a crystalline structure, and if the
recoiling energy is low, no nuclear interactions occur, so the quenching factor, q, equals
one. This effect is known as channeling [33]. Since NaI(Tl) is a crystalline material, we
need to include this effect in our calculations. We use the parameterisation given in [16]
for the fraction f of channeled events relevant for DAMA

fNa(ER) ≈ e−ER/18

1 + 0.75ER
, fI(ER) ≈ e−ER/40

1 + 0.65ER
. (4.1)
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4.1.2 Calculating limits

DAMA have released their binned data from the combined DAMA/LIBRA and DAMA/NaI
data sets covering the range 2-20 keVee. A clear modulation signal is present below about
8 keVee, while the modulation is consistent with zero at higher energies [2]. The rate in
the lowest energy bin, covering the range 2-2.5 keVee, is smaller than in the next bin,
covering the range 2.5-3 keVee, suggesting that the rate is falling to zero at low energies.
While care should always be taken when examining the data at the edges of the experi-
mental sensitivity, it should be noted that both of these features are found naturally with
inelastic scattering.

We use a χ2 goodness of fit test to analyse the DAMA results. We construct a χ2

function using the twelve 0.5 keVee width bins between 2.0 - 8.0 keVee and their relative
uncertainties. We do not fit to the higher energy bins because, as mentioned above, the
inelastic spectrum falls off at high energies.

In our 2D plots, we find the best fit point by minimising the χ2 function for the
two unconstrained parameters, either σn and Mχ, or σn and δ. For a goodness of fit,
we require that the best fit point have χ2

min < 10, given that we have 12 bins and 2
free parameters. Allowed regions at a given confidence limit are obtained by looking for
contours χ2 = χ2

min + ∆χ2, where ∆χ2 = 4.61 or 10.60 for 90% and 99.5% confidence
limits respectively.

DAMA have also released the unmodulated rate for a single-hit scintillation as mea-
sured by DAMA/LIBRA. A WIMP is expected to scatter once, so we are using the rest
of the detector as a veto. No other background subtraction is applied. We can use this
data to set a limit by requiring that the calculated unmodulated rate not be larger than
the measured rate across the energy range shown in figure 1 of [2].

It should be noted that we have not included the effect of the finite energy resolu-
tion of the detector in our calculations. We are fitting to the modulated rate from the
combined data sets of DAMA/LIBRA and DAMA/NaI, however the energy resolution for
DAMA/LIBRA and DAMA/NaI are known to be different [34, 35].

4.2 Null experiments

In this section, we discuss the data used in calculating the regions excluded at 90% confi-
dence level by other direct detection experiments. We adopt a conservative approach and
include events that the experiments ascribe to background processes when setting limits.
We will find that the most constraining experiment is CRESST-II. Unless otherwise stated,
we use the “pmax method”, described in [36], in setting our limits. This method has the
advantage of setting similarly strong limits as the “optimum interval method”, but is easier
to implement. Care should be taken when comparing exclusion curves at 90% confidence
level and the region allowed by DAMA at 90% confidence limit, since we are using different
statistical methods in evaluating them. In calculating the total event rate, we integrate
the differential rate over the energy range of the experiment, then find the average value
over the running dates given by the collaboration, and finally, we multiply by the exposure.

– 9 –
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As a final check of our methods, we have reproduced the published exclusion curves from
CDMS II and XENON10 in the δ = 0 limit.

4.2.1 CDMS II

In setting the limits for CDMS II, we use the three runs from the Soudan Underground
Laboratory which were sensitive to nuclear recoil energies between 10-100 keV [37–39]. We
only consider scattering from germanium as scattering off of silicon is highly suppressed.
The published effective germanium exposures are weighted for a WIMP mass of 60 GeV
and averaged over recoil energies 10-100 keV, however these numbers are expected to apply
for an inelastic WIMP since their acceptance efficiency is fairly constant over their energy
range. The first run took place from 11th October 2003 to 11th January 2004, had an
exposure of 19.4 kg-day and saw one event at 64 keV [37]. The second run was from 25th
March 2004 to 8th August 2004, had an exposure of 34 kg-day and saw one event at 10.5
keV [38]. The latest five-tower run was between October 2006 and July 2007, had an
exposure of 121.3 kg-day and saw no events [39].

4.2.2 CRESST-II

For the CRESST-II limits, we use data collected by the Julia and Daisy detectors [40]
between 31st January 2004 - 23rd March 2004, and the Verena and Zora detectors [41]
between 27th March 2007 - 23rd July 2007. We only consider scattering off of the tungsten
atoms in the CaWO4 crystals, and include events on or beneath the curve where 90% of the
tungsten recoils are expected. The Julia detector had a tungsten exposure of 6.26 kg-day
and we include the four observed events between 10 - 50 keV and an unpublished event
above 50 keV [42]. The Daisy detector had a tungsten exposure of 6.84 kg-day and we
include the two events between 10-12 keV, the event which lies on the curve where 90% of
the tungsten recoils are expected, at approximately 22 keV, the event at approximately 45
keV, and a second unpublished event above 50 keV [42]. The Verena and Zora detectors
had a combined tungsten exposure of 30.6 kg-day and we use the seven published events
between 10 - 100 keV. To take into account the difference in energy regions, we do not
integrate above the energy of the extra events for the Daisy and Julia detectors.

Note that following [4] we have set limits by including the Daisy point which lies on
the tungsten curve at 22 keV in figure 9 of ref. [40]. If we redo the analysis by ignoring
this point and only including data which lie fully below the curve, we find that CRESST-II
just manages to exclude all of the DAMA/LIBRA 99.5% allowed region. This point has
such a large impact on the limits set using the “pmax method” because it lies at the peak
of the recoil energy spectrum, as can be seen in the left panel of figure 1.

This shows us that with further data, the CRESST-II experiment has the ability to
completely exclude the DAMA/LIBRA region.

4.2.3 KIMS

From the null experiments we consider, KIMS [43] is the only one where scattering occurs
off of iodine, in the CsI(Tl) crystals they employ. Two of the crystals collected experimental
data between June 2005 and March 2006, then another two crystals were installed, running
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between December 2005 and March 2006 [44]. In setting limits, we find the average rate
and statistical error from the four crystals, and require the calculated rate to be less than
the measured rate plus 1.64 times the error in the first five bins, corresponding to the
energy range 3-8 keVee. For the quenching factor, we use the parameterization

qCsI(T l)(ER) ≈ 0.175e−ER/137

1 + 0.00091ER
. (4.2)

This function fits the curve shown in figure 13 of [45] to a good accuracy.

4.2.4 XENON10

XENON10 [46] is a liquid xenon based experiment which ran from 6th October 2006 until
14th February 2007 and had an effective exposure of 316.4 kg-day. In calculating our limits,
we include the 10 events used in their analysis in the range 4.5 - 26.9 keV, as well as the 14
events in the range 26.9 - 45 keV. Below 26.9 keV, we use the published acceptances and
above 26.9 keV we use the known software cut efficiencies and assume a constant nuclear
recoil acceptance of 0.45 [47].

4.2.5 ZEPLIN-II

We include only the limits from ZEPLIN-II [48] since ZEPLIN-I [49] is not competitive with
the other experiments we consider [4]. ZEPLIN-II is another xenon based experiment with
an effective exposure of 225 kg-day and was assumed to run between May and July 2006, as
suggested by [50]. 29 events were observed in the range 5 - 20 keVee, which corresponds to
a range of 13.9 - 55.6 keV if the published quenching factor q = 0.36 is used. In calculating
our limits, we use the published efficiencies and we take all observed events as signal.

4.2.6 ZEPLIN-III

We also include the first results from the ZEPLIN-III experiment [51], the successor to
ZEPLIN-II. ZEPLIN-III is also xenon based and improves on the limits set by ZEPLIN-II
as only 7 events were observed, in the range 10.7 - 30.2 keV. The effective exposure was
126.7 kg-day, the data being collected between 27th February 2008 and 20th May 2008.
Using figure 15 of [51], we extract an approximate quenching factor parameterization:

qXe(EM ) ≈ (0.142EM + 0.005) exp[−0.305(EM )0.564]. (4.3)

We extracted the energies of the 7 observed events from figure 12 of [51] and converted to
nuclear recoil energies using the above quenching factor.

5 Results and discussion

In this section we present our results for iDM in the context of the different halo models.
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Figure 2. Here we show the variation in the exclusion limits set by the experiments as δ is varied
and Mχ is held constant. These limits are calculated using the SHM. The preferred region of
parameter space for the DAMA results is shown at 90% and 99.5%, and the DAMA best fit point is
plotted with a dot. As one can see there is a small region of agreement between all experiments for
low masses and δ ∼ 130 keV. At higher masses both CRESST-II and CDMS II exclude the DAMA
results and the region of agreement with the other experiments is greatly reduced.
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Figure 3. Change in limits when the SHM is replaced by the VL220 halo, cf, figure 2. At low
masses there is a smaller region of agreement between CRESST-II and DAMA, with CRESST-II
almost excluding DAMA at the 90% level over all masses. At high masses, however, CRESST-II
and CDMS II are significantly less constraining on the DAMA region than for the SHM, this can
be seen by comparing the bottom right panels of both figures. One can also see that the typical
cross sections are an order of magnitude higher for the VL220 halo at low masses than for the SHM
(note also that the lower panels have a different scale for the cross section).

5.1 VL220 vs SHM

In figures 2 and 3 we present a comparison of the iDM limits on the DAMA/LIBRA
preferred region under the assumptions of the SHM and the VL220 halo, for a variety of
WIMP masses.

As one can see the allowed cross section limits are generally higher for the VL220

halo than the SHM. Also the CRESST-II results are slightly more constraining on the
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Figure 4. The allowed parameter space for fixed δ = 100keV and varying Mχ. For the SHM (left
panel) and this value of δ, CDMS II excludes the DAMA region at 90%. For the VL220 halo (right
panel) the tightest constraints are set by CRESST-II, and there is agreement between DAMA and
CDMS II up to high WIMP masses. Again one can see that the typical allowed cross sections are
an order of magnitude higher for the VL220 halo.

DAMA/LIBRA preferred region at low mass when the VL220 halo is used. The most in-
teresting feature to note is that all of the experiments show less disagreement with the
DAMA/LIBRA region at high WIMP masses when the VL220 halo is used. This fea-
ture is most prominent for the CDMS II exclusion line, but is true for all experiments to
some degree.

This feature is made more explicit by observing how the limits change as a function
of Mχ for fixed δ. In figure 4 we show the exclusion limits for δ = 100 keV and 50 GeV <

Mχ < 1000 GeV.

In this case all experiments are less constraining on DAMA/LIBRA at high mass,
however the CDMS II limits completely rule out the entire DAMA/LIBRA preferred region
under the assumptions of the SHM, yet for the VL220 halo there is agreement up to Mχ ∼
O( TeV). This can be explained by a combined effect of iDM and the VL220 velocity
distribution, as noted in section 3.

Looking quantitatively at this effect we can take the example of germanium in the
CDMS II detector. As the inelasticity has pushed the minimum velocity up significantly
we need only consider the tangential velocity distributions (in the Earth’s frame), as they
are centered around vcirc ∼ 220 km/s whereas the radial velocity distribution is centered
around v0r ∼ 0 km/s. Therefore the high velocity components scattering on the germanium
will be from the tangential component of the halos.

The CDMS II detector is sensitive to the energy range 10 keV < ER < 100 keV, and if
we consider 50 GeV < Mχ < 500 GeV, then for δ = 100 keV the minimum velocity lies in
the range 550 km/s < vmin < 1006 km/s. As the escape velocity is taken as vesc = 550km/s
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Figure 5. Left Panel: Tangential velocity distributions in the Earth rest frame. The solid black
and blue lines show the SHM and Dark Disc distributions and the dashed and dot-dashed lines show
the VL220 and VL270 distributions respectively. The Dark Disc distribution is peaked at 40 km/s.
Right Panel: Detectable particle distributions in a germanium detector as a function of tangential
velocity. The detectable region is shaded in grey. The left edge of the grey region corresponds to
Mχ = 500 GeV.

in the halo rest frame, then the highest velocity particles observed in the Earth’s frame
have vmax ∼ 770km/s. Therefore the observable particles will have velocities 550 km/s <
vobs < 770 km/s. In figure 5 we plot the two different tangential velocity distributions and
the region over which vmin varies as Mχ is increased.

As one can see the detectable particle number in the SHM distribution grows signifi-
cantly as Mχ is increased and vmin decreases, leading to stronger limits on the cross section
from the CDMS II results. However, for the VL220 distribution this growth in the number
of detectable particles is not nearly as pronounced, due to the reduced width of the dis-
tribution, and this leads to much slower variation in CDMS II exclusion limits as Mχ is
varied, and overall to much weaker limits than from the SHM. As stated above this effect
is due to the combination of iDM, which increases the minimum velocity relative to elastic
scattering, and the VL220 velocity distribution, which is much smaller than the SHM at
high velocities.

5.2 VL270 vs SHM

In figures 6 and 7, we present the exclusion limits for VL270. Comparing figure 6 with
figures 2 and 3, and figure 7 with figure 4, we see that although the exclusion limits from
VL270 typically occur at a larger cross section than the SHM, the DAMA allowed region
is much closer to that from the SHM than VL220.

With reference to figure 5, we see that the departure from the SHM velocity distribution
is greater for the VL220 distribution compared to the VL270 distribution, particularly in
the high velocity region. However, the tail of the distribution is still much less populated
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Figure 6. Exclusion limits for VL270. These results are similar to those presented in figure 2. We
see that there are still allowed regions of the DAMA parameter space at the 90% confidence level
for WIMP masses lower than 200 GeV and δ ∼ 130 keV, however these typically occur at larger
cross sections than in figure 2.

in VL220 and VL270 compared to the SHM, which explains why the exclusion limits for
VL220 and VL270 typically occur at larger cross sections than for the SHM. The increased
population in the VL270 tail, relative to the VL220 tail, and the small change in particle
numbers over the region of vmin of interest leads to stronger exclusion limits at high WIMP
masses compared to VL220. This shows that even a small change in the dispersion can lead
to relatively large changes in allowed parameter space.

5.3 The dark disc and iDM

In figure 8 we plot the exclusion limits as a function of δ for the SHM and SHM + Dark
Disc. As a fiducial choice we have taken R = ρDisc

ρSHM
= 1.

One can immediately see that the dark disc only influences the limits at very low δ.
Increasing the density of the dark disc will change the limits at low δ but not the value
of δ at which the disc is detectable. The fact that the dark disc is not detectable at high
δ is due to the increased minimum velocity required for scattering. As the disc lags the
motion of the Sun by 40 km/s, and has velocity dispersion of 39 km/s in the tangential
direction, 99% of disc particles will only have a relative velocity up to vDD ∼ 135 km/s.
If the minimum velocity for scattering is above this the dark disc will have little effect on
event rates. This effect is demonstrated in figure 9.

One can see that for heavier WIMP masses the effect of the Dark Disc would increase,
but would still only be found for δ < 20 keV. These results would suggest that possible sub-
halo components which are rotating roughly in the same way as the visible galactic plane
would have little or no effect on inelastic scattering event rates, whereas the effect on elastic
scattering rates should be pronounced. This effect could have interesting consequences for
clumpy dark matter.
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Figure 7. The allowed parameter space for fixed δ = 100 keV and δ = 135 keV while varying Mχ.
Comparing with figure 4, we see that these results are similar to those obtained for the SHM, the
difference being that the exclusion curves are typically at larger cross sections. While all of the
DAMA parameter space is excluded at δ = 100 keV (the right panel), there is clearly some allowed
parameter space at δ = 135 keV (the left panel) for WIMP masses less than 200 GeV.
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Figure 8. Exclusion limits for the SHM (left panel) and the SHM + Dark Disc (right panel) for
a WIMP mass of 90 GeV. The only major differences occur at relatively low δ where one can see
the region corresponding to DAMA channeled events is deformed when the Dark Disc is included.
However, this region of parameter space is completely excluded by the other experiments.

5.4 Discussion

Variations in the regions of parameter space consistent with all experiments in figures 2), (3
and 6 show that precise statements about the consistency of DAMA/LIBRA with other
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Figure 9. The minimum velocity for scattering at CRESST-II (Dashed) and DAMA (Solid). The
velocities are calculated using eq. (2.1) and taking the experimental energy threshold. The DAMA
line corresponds to channeled scattering and the gray line is roughly the maximum velocity at which
the Dark Disk particles would be found. For δ ≥ 15 keV very few particles in the dark disc will
scatter.

direct detection experiments depend sensitively on the precise details of the velocity dis-
tribution of the DM in our galaxy. Since the solar neighbourhood is baryon dominated we
would expect the DM velocity distribution to be influenced by the effect of baryons. Al-
though the Dark Disc simulation is an important first step in this direction, since it looks at
one possible effect of the baryons, in this case the velocity distribution of the halo is taken
to be the SHM with an added Maxwellian component, as opposed to a velocity distribution
resulting from a cosmological simulation with baryons and dark matter included from the
outset. As this added Dark Disc component contributes negligibly to iDM scattering in
the region of parameter space of interest, the limits set for iDM are identical for the SHM
and SHM + Dark Disc scenarios. Therefore this uncertainty will remain until such a time
when the velocity distribution resulting from a cosmological simulation with baryons in-
cluded is obtained. Also, we emphasize again that any velocity distribution obtained from
a simulation will have an inherent uncertainty since it is a Milky-Way-like galaxy, and not
the Milky Way itself.

In light of recent results from the indirect detection experiments PAMELA [52] and
ATIC [53], it is interesting to note that with the VL220 velocity distribution, the DAMA
region is consistent with WIMP masses Mχ ∼ 1 TeV, as shown in figures 3 and 4. In the
context of the SHM, regions of agreement between DAMA/LIBRA and other experiments
only exist at WIMP masses too small to allow a DM annihilation interpretation of the ATIC
results. For the VL220 distribution this may be possible and models attempting to explain
the DAMA/LIBRA, PAMELA and ATIC anomalies may be consistent with experiment.

As our analysis has been purely phenomenological, keeping Mχ, σn and δ as free
parameters, comparison with specific models of iDM is possible, however a detailed analysis
of any specific model is beyond the scope of this paper.
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Figure 10. The exclusion limits with an iodine quenching factor of qI = 0.08 (left panel) and
qI = 0.1 (right panel), for a WIMP mass of 150 GeV and using the SHM. One can see that
the preferred region of parameter space for the DAMA results can move by ∆(δ) ∼ 30 keV and
∆(σn) ∼ 5× 10−40cm2, leading to agreement with or exclusion by the other experiments.

5.5 Iodine quenching factor

In [32] the iodine quenching factor is given as qI = 0.09 ± 0.01. As changing the value
of the quenching factor will stretch the recoil spectrum as a function of recoil energy it
is interesting to see what effect varying the quenching factor has on the DAMA/LIBRA
preferred region of parameter space, and whether this strongly influences the agreement
with other experiments. The effect of this variation is illustrated in figure 10.

As one can see, the overall effect can be significant, and the DAMA/LIBRA preferred
region can shift by a relatively large amount. For the lower quenching factor there is a
region of agreement between all experiments at the 90% confidence level, whereas for the
higher quenching factor there is disagreement between DAMA/LIBRA and the CRESST-II
and CDMS II experiments at almost a 99.5% level for the SHM.

As this effect is so pronounced it would be interesting if the DAMA collaboration
are able to put tighter bounds on the quenching factors in their experiment. For elastic
scattering the uncertainty is not so significant as it is the channeled event regions where qI =
1 that show best agreement with the other experiments. However, as inelastic scattering
finds greatest agreement for the region of parameter space corresponding to quenched
events, the value of the quenching factor is of much greater importance.

5.6 Circular velocity

In [14] the Sun’s circular velocity about the center of the Milky Way is given as vcirc =
220 ± 20km/s. In the iDM scenario the majority of observed events are expected to be
from scattering off WIMPs at the high end of the tangential velocity distribution, so it is
expected that varying the circular velocity will have an effect on the exclusion limits set
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Figure 11. The exclusion limits for a local circular velocity of vcirc = 200 (left panel) and vcirc = 220
(right panel), for a WIMP mass of 125 GeV and using the SHM. One can see that the limits change
a small amount and that the overall agreement with the DAMA results is slightly better for a lower
circular velocity. However, the overall qualitative effect of changing the circular velocity is relatively
small.

by detectors. In figure 11 we plot the exclusion curves for a WIMP of mass Mχ = 125 GeV
for vcirc = 200, 240km/s.

As expected this variation does affect the exclusion limits, however there is little overall
change in the qualitative features. Unlike with the Dark Disc this variation occurs over
all ranges of δ. Due to the enhancement of the signal, through increasing the number
of particles with v > vmin, increasing the circular velocity of the Sun generally leads to
marginally stronger upper limits on cross sections for iDM.

5.7 Local galactic escape velocity

The RAVE survey have measured the escape velocity to lie within the range 498 < vesc <

608 km/s at 90% confidence [15]. In this paper, we have taken the fiducial value vesc = 550
km/s, however the experiments are only sensitive to the tails of the velocity distribution,
which depend on the escape velocity. In figure 12 we illustrate what the effect of varying
the escape velocity within the range allowed by the RAVE survey has on the experimen-
tal limits.

The limit which shows the largest change is from CDMS II, although all experimental
limits show some variation, particularly at lower masses. This effect can be understood
with reference to figure 5. At lower masses, the minimum velocity is closer to the escape
velocity, therefore for lower escape velocities, the range of integration is smaller, hence the
limits are weaker. At higher masses, the relative change in varying the escape velocity
is lower because the range of integration is larger, so the difference for all experiments
is smaller.
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Figure 12. Exclusion limits for the SHM for vesc = 500 km/s (left panel) and vesc = 600 km/s
(right panel). There is better agreement between experiments for lower escape velocity and the
limits from CDMS II show the most sensitivity to the escape velocity.

6 Conclusions

We have shown, in the context of iDM, that the region of agreement between the DAMA
data and results from other experiments is sensitive to the uncertainties present in the
galactic WIMP velocity distribution. In particular we have found that the other direct de-
tection experiments, including the most recent ZEPLIN-II and III, CRESST-II, XENON10,
KIMS, and CDMS-II data sets, do not exclude the region of parameter space preferred by
the DAMA results up to WIMP masses Mχ ∼ 1 TeV when the VL220 velocity distribu-
tion is used (see figures 3 and 4), while for the VL270 velocity distribution, WIMP masses
Mχ ≤ 200 GeV are allowed (see figures 6 and 7). Furthermore, we have also argued that
the region of agreement between experiments is very sensitive to the quenching factor used
to interpret the DAMA data (see figure 10), and also to the local galactic escape velocity
(see figure 12), both of which presently have ∼10% uncertainties, and somewhat to the
Sun’s circular velocity (see figure 11).

Independent of experimental set-ups we have also shown that, in the iDM scenario,
detectors would be insensitive to WIMPs traveling with a small velocity relative to the
sun due to the increased minimum velocity for scattering. This would lead to dark matter
clumps or streams being undetectable if rotating in the galactic plane, as in the Dark Disc
halo model, or streaming with a small relative velocity (see figure 8).

New data from heavy element experiments such as CRESST-II and XENON100 could
have the potential to completely exclude the DAMA preferred region for iDM, especially if
taken during the modulation maximum. In particular, if the planned EURECA experiment
were to use a tungsten detector it would provide significant limits on both the elastic and
iDM scattering cross-sections. Furthermore because of the low energy cut-off in the recoil
energy spectrum for iDM, it is important that the experiments increase their sensitivity at
higher recoil energies, where the iDM recoil spectrum peaks.
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Without a better understanding of the details of the velocity distribution in our galaxy,
including the effects of the baryons, precise statements about the consistency of various
direct detection experiments are not possible.

Note added: subsequent to the submission of this work two recent DM simulations were
brought to our attention:

• Recently the results of a second simulation, Via Lactea II [54], were made public.
These results showed further detail in the substructure of the DM halo, with the
clumpiness extending over six orders of magnitude, down to the resolution limit.

• Another Milky Way-sized DM halo simulation, the Aquarius Project, also recently
released their results [55], and the phase-space structure of these simulated halos was
the subject of further study [56]. The velocity distributions found varied from simu-
lation to simulation and showed interesting bumpy features. Further to this, in [56]
the influence of these velocity distributions on direct detection signals for elastically
scattering dark matter was investigated and it was found that the recoil spectra could
deviate by up to 10% from that expected from the best-fit multivariate Gaussian.

These simulations provide further strong support for deviations from the SHM, but as
data from these simulations are not (to the authors knowledge) publicly available, we have
not been able to update our study to include them, although we hope to return to this
subject in a future publication.
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